Tentang iklan-iklan ini

Statistik Uji Kruskal-Wallis (Seri 3. Non-Parametrik)


Seri ketiga dari seri tulisan mengenai statistik non-parametrik ini, akan membahas mengenai Statistik Uji Kruskal-Wallis, contoh perhitungan manualnya dan aplikasi pada program statistik SPSS.
Analisis varians satu arah berdasarkan peringkat Kruskal-Wallis pada statistik non-parametrik dapat digunakan pada sampel independent dengan kelompok lebih dari dua. Statistik uji Kruskal-Wallis dapat dituliskan sebagai berikut:

Dimana : N = jumlah sampel
Ri = jumlah peringkat pada kelompok i
ni = jumlah sampel pada kelompok i
Untuk memahami rumus prosedur tersebut, diberikan contoh sebagai berikut: Sebuah perusahaan ingin mengetahui apakah terdapat perbedaan keterlambatan masuk kerja antara pekerja yang rumahnya jauh atau dekat dari lokasi perusahaan. Misalkan jarak rumah dikategorikan dekat ( kurang dari 10 km), sedang (10 – 15 km) dan jauh ( lebih dari 15 km). Keterlambatan masuk kerja dihitung dalam menit keterlambatan selama sebulan terakhir.
Penelitian dilakukan pada tiga kelompok pekerja dengan sampel acak, dengan masing-masing sampel untuk yang memiliki jarak rumah dekat sebanyak 10 sampel, jarak sedang sebanyak 8 sampel dan jauh sebanyak 7 sampel.
Data hasil penelitian dan prosedur untuk mendapatkan statistik uji Kruskal-Wallis diberikan pada tabel berikut:

Kolom (1), (2) dan (3) adalah data pekerja menurut jarak rumah dan menit keterlambatan. Kolom (4), (5) dan (6) adalah rangking dari keterlambatan. Rangking disusun dari nilai keterlambatan terkecil sampai terbesar, tanpa membedakan kelompok jarak rumah pekerja.
Selanjutnya lakukan penjumlahan rangking untuk masing-masing kelompok, yang terlihat pada baris Ri. Kemudian, kuadratkan masing-masing jumlah peringkat tersebut.
Dari data tersebut, maka dapat dihitung statistik uji Kruskal-Wallis sebagai berikut:

Dalam SPSS, untuk perhitungan statistik uji Kruskal-Wallis mengikuti tahapan sebagai berikut:
1. Berikan kode numerik untuk variabel jarak yaitu 1 = jarak dekat, 2 = jarak sedang dan 3 jarak jauh. Data menit keterlambatan tidak perlu diperingkat, karena secara otomatis akan dilakukan oleh program SPSS.
2. Persiapkan worksheet dengan cara, buka program SPSS, klik Variable View. Akan muncul tampilan berikut:

Pada baris pertama, isikan kolom Name dengan Jarak, Measure = Ordinal dan kolom Values dengan 1 = Dekat, 2 = Sedang, 3 = Jauh. Abaikan kolom lainnya. Pada baris kedua isikan, kolom Name dengan Keterlambatan. Kolom lainnya diabaikan (mengikuti default dari program).
Cara pengisian kolom Values sebagai berikut. Klik icon yang bertanda titik tiga (…) pada kolom Values pada baris 1, akan muncul tampilan berikut:

Isikan angka 1 pada kotak Value dan Dekat pada kotak Label. Kemudian klik Add. Isikan angka 2 pada kotak Value dan Sedang pada kotak Label, kemudian klik Add. Iskan angka 3 pada kotak Value dan Jauh pada kotak Label, kemudian klik Add. Selanjutnya klik OK, dan kembali ke menu data dengan mengklik Data View
Selanjutnya klik Data View untuk mulai mengisi data
3. Input data kategori jarak (1, 2, 3) dan menit keterlambatan pada workheet SPSS.
4. Setelah pengisian data, kemudian Klik > Nonparametric Tests > K Independent Samples. Akan muncul tampilan berikut:

Isi kotak Test Variable List dengan Keterlambatan dan isi Grouping Variable dengan Jarak. (Catatan: variabel Keterlambatan dan Jarak, sebelumnya berada di kotak sebelah kiri. Pindahkan ke kotak sebelah kanannya dengan cara klik variabel, kemudian klik panah yang menuju kotak kanannya.). Centang juga Kruskal-Wallis H jika belum tercentang.
Selanjutnya klik Define Range, akan muncul tampilan berikut:

Isikan kotak Minimum dengan angka 1 dan Maximum dengan angka 3. Klik Continue, dan klik OK. Akan keluar output SPSS sebagai berikut:

Output tabel pertama memberikan deskripsi dari ranking masing-masing kelompok jarak, berupa jumlah sampel dan rata-rata ranking. Output tabel kedua memberikan nilai Chi-Square dari statistik uji Kruskal-Wallis sesuai dengan rumus yang telah dibahas sebelumnya. Derajat bebas (df) dari statistik chi-square ini adalah jumlah kelompok (dalam kasus kita = 3 ) dikurangi 1. Dalam output juga diberikan P-value untuk chi-square ini (nilai Asymp. Sig. dalam tabel output kedua. Dalam pengujian hipotesis, kita membandingkan nilai P-value ini dengan tingkat signifikansi pengujian (α), dengan kriteria tolak H0 jika P-value < α, dan terima H0 jika P-value > α.
Jika pengujian menggunakan α = 10 %, terlihat bahwa nilai P-value = 0,137 > α = 0,1. Dengan demikian secara statistik dapat disimpulkan tidak ada perbedaan keterlambatan antara pekerja yang memiliki rumah dekat dengan rumah jauh.
Cara lain dalam pengujian hipotesis ini adalah dengan membandingkan nilai chi-square yang diperoleh nilai-nilai kritis pada tabel Distribusi chi-square. Tabel tersebut umumnya tersedia pada lampiran buku-buku yang membahas mengenai statistik non-parametrik.

Tentang iklan-iklan ini

6 Tanggapan

  1. apakah analisis Uji Kruskal-Wallis dapat dipakai pada sampel dependent juga, kalau bisa,.. adakah contohnya?

  2. pak,kalau nilai asymp sig. lbh kecil dari alpha, berarti terdapat perbedaan bermakna.lalu dilanjutkan dengan uji apa lagi pak?
    terima kasih sebelumnya..

  3. Pak, mau tanya.. cara memasukkan data bagaimana ya kalau data seperti yang ada di contoh?

  4. Salam kenal. Terima kasih atas artikelnya yang lengkap, saya termasuk penikmat statistik. Tks.

  5. Did you take an assistance of a essay writing service for your supreme article? I opine that you really have great essay papers composing technique. Thanks so much for this!

  6. wah mantap ni pak
    walaupun saya nggak terlalu ngerti dengan statistik tapi statistik memang diperlukan waktu buat skripsi saya
    sekalian nanya ni pak alpha 5%, alpha 2.5% itu masudnya apa ya pak terus alasan memilih 5% atau 2.5% apa
    terimakasih

    alpha sering disebut taraf nyata atau tingkat signifikansi. Dalam pengujian hipotesis, secara sederhana diartikan sebagai risiko kesalahan maksimum dalam penarikan kesimpulan (kemungkinan Ho benar). Alasan memilih nilai alpha tidak ada, tapi ditetapkan secara arbiter oleh peneliti. Tetapi kelazimannya adalah 1 %, 5%, 10%.

Berikan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Logout / Ubah )

Twitter picture

You are commenting using your Twitter account. Logout / Ubah )

Facebook photo

You are commenting using your Facebook account. Logout / Ubah )

Google+ photo

You are commenting using your Google+ account. Logout / Ubah )

Connecting to %s

Ikuti

Get every new post delivered to your Inbox.

Bergabunglah dengan 300 pengikut lainnya.

%d blogger menyukai ini: