About these ads

Korelasi Peringkat (Seri 4. Non-Parametrik)


Pada seri keempat dari seri tulisan mengenai non-parametrik kali ini akan dibahas mengenai korelasi peringkat. Terdapat tiga jenis koefisien korelasi peringkat pada nonparametrik yang umumnya digunakan yaitu Spearman R, Kendal tau dan Gamma Coefficient. Statistik chi-square juga merupakan bagian dari korelasi non-parametrik, tetapi berbeda dengan ketiga jenis korelasi tersebut, perhitungannya didasarkan pada tabel frekuensi dua arah (tabel silang). Selain itu, dalam Spearman R, Kendal tau dan Gamma mempersyaratkan data dalam skala ordinal (atau dapat diordinal/di peringkat), sedangkan pada statistik chi-square dapat berupa data nominal maupun ordinal. Untuk statistik chi-square akan dibahas pada seri tulisan mengenai non-parametrik berikutnya
Spearman R adalah ukuran korelasi pada statistik non-parametrik yang analog dengan koefisien korelasi Pearson Product Moment pada statistik parametrik. Spearman R adalah korelasi Pearson yang dihitung atas dasar rank dari data.
Kendal tau, adalah ukuran korelasi yang setara dengan Spearman R, terkait dengan asumsi yang mendasarinya serta kekuatan statistiknya. Namun, besaran Spearman R dan Kendal tau akan berbeda karena perbedaan dalam logika mendasari serta formula perhitungannya.
Jika Spearman R setara dengan koefisien korelasi Pearson Product Moment, yaitu koefisien korelasinya pada dasarnya menunjukkan proporsi variabilitas (dimana untuk Spearman R dihitung dari ranks sedangkan korelasi Pearson dari data aslinya), sebaliknya ukuran Kendal tau merupakan probabilita perbedaan antara probabilita data dua variabel dalam urutan yang sama dengan probabilita dua variabel dalam urutan yang berbeda.
Berdasarkan logika perhitungan ini, Noether (1981) dalam (Daniel,1991) mengemukakan bahwa koefisien Kendal tau lebih mudah ditafsirkan dibandingkan Spearman R.
Gamma statistic, lebih baik dibandingkan Spearman R atau Kendal tau ketika data mengandung banyak observasi yang memiliki nilai yang sama. Gamma ekuivalen dengan Spearman R dan Kendal tau dari sisi asumsi yang mendasarinya. Tetapi dari sisi intepretasi dan perhitungannya, Gamma lebih mirip dengan Kendal tau.
Untuk membedakan ketiga perhitungan korelasi tersebut, dapat dilihat sebagai berikut:

(Catatan: pemahaman mengenai concordant dan discordant dari perhitungan contoh berikut)
Sebagai contoh, misalnya suatu perusahaan ingin mengetahui efektivitas pengeluaran biaya iklan pada surat kabar lokal terhadap penjualan mereka. Untuk kepentingan tersebut, diambil sampel pada 11 daerah pemasaran, dengan biaya iklan dan penjualan selama setahun terakhir (dalam Rp Juta) masing-masingnya sebagai berikut:
Tabel: Contoh Kasus Korelasi Peringkat


Secara sederhana, untuk melihat efektivitas iklan terhadap penjualan, akan dilihat korelasi dari kedua variabel tersebut. Jika terdapat korelasi positif yang signifikan, maka dapat disimpulkan iklan tersebut efektif dalam meningkatkan penjualan. Demikian juga sebaliknya.
Untuk menghitung koefisien korelasi untuk ketiga pengukuran (tersebut, langkah pertama yang dilakukan adalah dengan memberi rangking untuk iklan dan penjualan, mulai dari yang angka terkecil sampai angka terbesar. Selanjutnya, lakukan perhitungan-perhitungan dengan tahapan seperti tabel berikut:
Tabel: Perhitungan Korelasi Peringkat

Kolom (1) adalah nama daerah, diurutkan berdasarkan biaya iklan terkecil sampai terbesar (hanya untuk memudahkan perhitungan).
Kolom (2) dan (3) adalah biaya iklan dan penjualan untuk masing-masing daerah.
Kolom (4) adalah rangking iklan, kolom (5) adalah rangking penjualan.
Kolom (6) adalah selisih rangking iklan dengan rangking penjualan.
Kolom (7) adalah kuadrat dari selisih rangking dari kolom (6)
Kolom (8) adalah nilai concordant. Concordant adalah rangking yang lebih besar yang berada dibawah Y (dalam hal ini rangking penjualan) jika diurut berdasarkan rangking X (dalam hal ini rangking iklan). Misalnya pada daerah K yang sesuai dengan rangking iklannya berada pada rangking 7. Penjualan daerah K adalah rangking 9. Jika ditelusuri kebawahnya terdapat satu rangking yang lebih besar dari 9, yaitu rangking 11. Sehingga nilai concordantnya adalah 1.
Kolom (9) adalah nilai discordant. Discordant kebalikan dari concordant yaitu mencari rangking yang lebih kecil. Misalnya pada daerah K dengan rangking penjualan 9. Jika ditelusuri kebawahnya terdapat tiga rangking yang lebih kecil dari 9, yaitu rangking 5, 8, 7. Sehingga nilai concordantnya adalah 3.
Setelah mendapatkan nilai-nilai pada masing-masing kolom, selanjutnya jumlahkan kolom di2, kolom C (=Nc) dan kolom D (=Nd). Dengan memasukkan ketiga nilai tersebut kedalam persamaan diatas, didapatkan korelasi untuk Spearman, Kendal dan Gamma sebagai berikut:

Dari hasil perhitungan, terlihat bahwa hasil korelasi Spearman lebih tinggi dibandingkan Kendal tau dan Gamma. Selain itu, nilai koefisien Kendal tau dan Gamma dalam kasus ini adalah sama, karena tidak ada nilai dalam variabel yang berangka sama. Kendal tau dan Gamma akan menghasilkan koefisien korelasi yang berbeda, jika terdapat nilai dalam variabel yang berangka sama.
Ok, cukup sekian dulu. Agar tulisan ini tidak terlalu panjang dan lama menguploadnya, pembahasan mengenai aplikasi perhitungannya pada SPSS akan dilanjutkan pada seri tulisan berikutnya:

About these ads

Tinggalkan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Logout / Ubah )

Twitter picture

You are commenting using your Twitter account. Logout / Ubah )

Facebook photo

You are commenting using your Facebook account. Logout / Ubah )

Google+ photo

You are commenting using your Google+ account. Logout / Ubah )

Connecting to %s

Ikuti

Get every new post delivered to your Inbox.

Bergabunglah dengan 295 pengikut lainnya.

%d bloggers like this: