Regresi Binary Logit (Seri 6 Model Ekonometrik dg SPSS)


Sebagai kelanjutan dari tulisan mengenai model pilihan kualitatif, pada bagian ini, akan dijelaskan contoh model binary logit dan estimasinya dengan menggunakan program SPSS. Sebagai contoh ilustratif, misalnya ingin diprediksi pengaruh umur, jenis kelamin dan pendapatan terhadap pembelian mobil. Berdasarkan hasil survai terhadap 48 responden, didapatkan datanya sebagai berikut:

Dimana:
Y = 1, jika konsumen membeli mobil, = 0 jika konsumen tidak membeli mobil
X1 = umur responden dalam tahun
X2 = 1, jika konsumen berjenis kelamin wanita, = 0 jika konsumen berjenis kelamin pria
X3 = 0, jika konsumen berpendapatan rendah, = 1 jika konsumen berpendapatan sedang
= 2 jika konsumen berpendapatan tinggi
Tahapan-tahapan estimasi dalam SPSS sebagai berikut:
1. Setelah data diinput dalam lembar kerja SPSS kemudian klik Analyze > Regression > Binary Logistic , selanjutnya akan muncul tampilan berikut:

2. Masukkan Y sebagai variable dependent dengan cara klik Y di kotak kiri, kemudian klik tanda panah disamping kotak Dependent. Masukkan X1, X2 dan X3 kedalam kotak Covariates, dengan cara klik masing-masing variable, kemudian klik tanda panah disamping kotak covariates.
3. Selanjutnya, karena variabel X3 merupakan peubah kategori (ordinal) dengan lebih dari dua kategori (yaitu 0=pendapatan rendah, 1=pendapatan sedang dan 2=pendapatan tinggi) maka diubah terlebih dahulu ke dalam 2 variabel dummy, untuk mengembangkan model yang logis dan mudah diinterpretasi, sebagai berikut: (ini sama dengan prosedur regresi dengan variabel bebas dummy sebelumnya)
X3_1 = 1, jika konsumen berpendapatan menengah
0, jika selainnya
X3_2 = 1, jika konsumen berpendapatan tinggi
0, jika selainnya
Dalam program SPSS untuk mengkonversi ini dengan cara klik Categorical dari tampilan diatas, maka akan muncul tampilan berikut:

Selanjutnya, klik X3, klik tanda panah disamping Categorical Covariates. Pilih Reference Category dengan First, kemudian klik Change dan Continue. Selanjutnya klik OK.

4. Akan keluar output SPSS untuk regresi logit sebagai berikut (disini hanya ditampilkan bagian-bagian terpenting saja yang akan dibahas):


Printout di tabel pertama diatas menjelaskan transformasi variabel X3 dengan kategori 0,1 dan 2 menjadi dua variabel dummy yaitu X3_1 dan X3_2. Seperti yang terlihat dari tabel tersebut, variabel X3_1 bernilai 1 untuk kategori 1 (pendapatan menengah) dan 0 untuk kategori lainnya. Variabel X3_2 bernilai 1 untuk kategori 2 (pendapatan tinggi) dan 0 untuk kategori lainnya. Dengan demikian, kategori 0 (pendapatan rendah) akan bernilai 0 baik pada variabel X3_1 dan X3_2.
Printout di tabel kedua diatas merupakan nilai Khi-kuadrat (χ2) dari model regresi. Sebagaimana halnya model regresi linear dengan metode OLS, kita juga dapat melakukan pengujian arti penting model secara keseluruhan. Jika metode OLS menggunakan uji F, maka pada model logit menggunakan uji G. Statistik G ini menyebar menurut sebaran Khi-kuadrat (χ2). Karenanya dalam pengujiannya, nilai G dapat dibandingkan dengan nilai χ2 tabel pada α tertentu dan derajat bebas k-1. (kriteria pengujian dan cara pengujian persis sama dengan uji F pada metode regresi OLS). Tetapi, kita juga bisa melihat nilai p-value dari nilai G ini yang biasanya ditampilkan oleh sofware-software statistik, termasuk SPSS.
Dari output SPSS, didapatkan nilai χ2 sebesar 18,131 dengan p-value 0,001. Karena nilai ini jauh dibawah 10 % (jika menggunakan pengujian dengan α=10%), atau jauh dibawah 5% (jika menggunakan pengujian dengan α=5%), maka dapat disimpulkan bahwa model regresi logistik secara keseluruhan dapat menjelaskan atau memprediksi keputusan konsumen dalam membeli mobil.
Printout di tabel ketiga memberikan estimasi koefisien model dan pengujian hipotesis parsial dari koefisien model. Dalam pelaporannya, model regresi logistiknya dapat dituliskan sebagai berikut:

Dari output SPSS diatas menjadi sebagai berikut:

Model ini merupakan model peluang membeli mobil [(P(xi)] yang dipengaruhi oleh faktor-faktor umur, jenis kelamin dan pendapatan. Model tersebut adalah bersifat non-linear dalam parameter. Selanjutnya, untuk menjadikan model tersebut linear, dilakukan transformasi dengan logaritma natural, (transformasi ini yang menjadi hal penting dalam regresi logistik dan dikenal dengan istilah ”logit transformation”), sehingga menjadi (pembahasan lebih rinci, silakan dibaca buku-buku ekonometrik):


1-P(xi) adalah peluang tidak membeli mobil, sebagai kebalikan dari P(xi) sebagai peluang membeli mobil. Oleh karenanya, ln [P(xi)/1-P(xi)] secara sederhana merupakan log dari perbandingan antara peluang membeli mobil dengan peluang tidak membeli mobil. Oleh karenanya juga, koefisien dalam persamaan ini menunjukkan pengaruh dari umur, jenis kelamin dan pendapatan terhadap peluang relative individu membeli mobil yang dibandingkan dengan peluang tidak membeli mobil.
Selanjutnya, untuk menguji faktor mana yang berpengaruh nyata terhadap keputusan pilihan membeli mobil tersebut, dapat menggunakan uji signifikansi dari parameter koefisien secara parsial dengan statistik uji Wald, yang serupa dengan statistik uji t atau uji Z dalam regresi linear biasa, yaitu dengan membagi koefisien terhadap standar error masing-masing koefisien.
Dari output SPSS ditampilkan nilai Wald dan p-valuenya. Berdasarkan nilai p-value (dan menggunakan kriteria pengujian α=10%), dapat dilihat seluruh variabel (kecuali X3_1), berpengaruh nyata (memiliki p-value dibawah 10%) terhadap keputusan membeli mobil.
Lalu, bagaimana interpretasi koefisien regresi logit dari persamaan di atas ? Dalam model regresi linear, koefisien βi menunjukkan perubahan nilai variabel dependent sebagai akibat perubahan satu satuan variabel independent. Hal yang sama sebenarnya juga berlaku dalam model regresi logit, tetapi secara matematis sulit diinterpretasikan.
Koefisien dalam model logit menunjukkan perubahan dalam logit sebagai akibat perubahan satu satuan variabel independent. Interpretasi yang tepat untuk koefisien ini tentunya tergantung pada kemampuan menempatkan arti dari perbedaan antara dua logit. Oleh karenanya, dalam model logit, dikembangkan pengukuran yang dikenal dengan nama odds ratio (ψ). Odds ratio untuk masing-masing variabel ditampilkan oleh SPSS sebagaimana yang terlihat tabel diatas (kolom Exp(B)).
Odds ratio dapat dirumuskan: ψ = eβ, dimana e adalah bilangan 2,71828 dan β adalah koefisien masing-masing variabel. Sebagai contoh, odds ratio untuk variabel X2 = e-0.1602 = 0,201 (lihat output SPSS).
Dalam kasus variabel X2 (jenis kelamin dimana 1 = wanita dan 0 = pria), dengan odds ratio sebesar 0,201 dapat diartikan bahwa peluang wanita untuk membeli mobil adalah 0,201 kali dibandingkan pria, jika umur dan pendapatan mereka sama. Artinya wanita memiliki peluang lebih rendahi dalam membeli mobil dibandingkan pria.
Dalam kasus variabel X1 (umur), dengan odds ratio sebesar 1,153 dapat diartikan bahwa konsumen yang berumur lebih tua satu tahun peluang membeli mobilnya adalah 1,153 kali dibandingkan konsumen umur yang lebih muda (satu tahun), jika pendapatan dan jenis kelamin mereka sama. Artinya orang yang lebih tua memiliki peluang yang lebih tinggi dalam membeli mobil.
Dalam konteks umur ini (yang merupakan variabel dengan skala ratio), hati-hati menginterpretasikan nilai perbedaan peluangnya. Jika perbedaan umur lebih dari 1 tahun, misalnya 10 tahun, maka odds rationya akan menjadi 4,14, yang diperoleh dari perhitungan sbb: ψ=e(10 x 0.142) . Artinya peluang membeli mobil konsumen yang berumur lebih tua 10 tahun adalah 4,14 kali dibandingkan konsumen yang lebih muda (10 tahun) darinya.
Selanjutnya, dalam konteks variabel pendapatan, terlihat bahwa X31 tidak berpengaruh signifikan. Artinya, peluang membeli mobil antara konsumen pendapatan sedang dan pendapatan rendah adalah sama saja. Sebaliknya, untuk X32, dapat diinterpretasikan bahwa peluang membeli mobil konsumen pendapatan tinggi adalah 6,45 kali dibandingkan pendapatan rendah, jika umur dan jenis kelaminnya sama.

14 Tanggapan

  1. admin, bagmana cara mregresi variabel yg alat ukurnya beda. X1= Luas Wilyah, X2= Jml Penduduk, X3= Indeks Pembangunan Manusia

  2. selamat pg pak, sy mau bertanya. diatas bpk mengatakan uji G kriteria pengujian sm dengan uji F di ols. apakah tabel yg digunakan jg sm? kl uji t di ols memakai perbandingan dgn tabel t, uji f ols dgn perbandingan tabel f. lalu utk uji g dan uji t( nilai wald) di logistik apakah memakai perbandingan tabel yg sama juga? atau utk uji g dan uji nilai wald di logistik keduanya memakai tabel distribusi chisquare pak?

  3. selamat siang pak, saya mau tanya jika hasil uji wald regresi logistik biner semua variabell lebih dari 0.05, apakah buruk? apa yang harus dilakukan?

    Maksudnya probabilita (sig) wald > 0.05 (tidak signifikan)? Jika semuanya tentu saja model harus diperbaiki. Langkah yang harus dilakukan adalah periksa data terlebih dahulu (terutama outliernya). Kedua periksa model, (uji multikolinearitas antar variabel bebas). Ketiga tambah data.

    • makasih pak atas pembahasanya semoga berkah ilmunya, maaf saya mau tanya lagi pak. regresi logiistik
      salah satu variabel saya adalah plafon pinjaman,saya pakai dummy sebagai berikut
      plafon1 plafon2
      1. 500.000 0 0

      > 1. 500.000 karena reference saya namakan plafon saja, semua saya masukan ke SPSS 17, plafon , plafon1 dan palfon2

      nah pas saya masukan ke SPSS saya isikan ke variabel viewnya di value saya tulis

      0 = lainya dan 1 = 1. 500.000

      kemudian saya olah, ternyata pas kolom case processing summray, variabel > 1. 500.000 di remove dari analisa dan jadi konstanta

      akhirnya di kolom categorical variabel coding nah > 1. 500.000 tidak terdaftar yang ada hanya
      Frek
      < 500.,000 lainya 249
      1. 500.00 itu di analisis karena akhirnya jumlah lainya di atas itu berjumlah 249 +32 = 281 sedangkan jumlah responden yang diteliti n 271 orang. bagaimana pak?
      makasih

    • mlm pak..
      apakah wald test itu sama dgn t hitung pak? dan apa fungsi nya wald test tersebut
      trma ksh pak..

  4. Selamat siang mas.
    saya Deni.
    Ingin bertanya, sedang ada tugas akhir dengan analisis binary logistic regression. Apakah di dalam BLR memerlukan uji asumsi klasik ? Adakah buku referensinya ?
    Kemudian bagaimana cara mengetahui berpengaruh / tidak berpengaruh dan signifikan / tidak signifikannya ?

  5. Pak, saya mau bertanya.
    Apakah kriteria pengujian hipotesis untuk uji wald dan LR pd regresi probit di SPSS sama dengan regresi logit??
    Trimakasih sebelumny,pak..

  6. Sore pak..
    Saya Lia mhsiswi akuntansi,,saat ini sdng mlakukan pnelitian..
    Saya menggunakan metode regresi logistik dlm pnelitian saya,,vriabel y mnggunakan dummy variable dan hasilnya 1 semua krna pngungkapannya brsifat mandatory..
    saya lakukan lngkah2 sesuai dgn buku imam ghozali tapi hasilnya tdk kluar..
    Apakah pngujiannya hrus satu2 misal y thdp x1, y thdp x2 dan slanjutnya?
    Mohon bantuannya..
    Trimakasih..

  7. Pak, bagaimana menguji pengaruh x1,x2,x3 terhadap Y?

  8. maaf pak, saya sedang melakukan analisis cross sectional. apabila nilai p = 0 dan nilai OR juga 0 apakah bisa???
    dengan tingkat signifikansi 95%.
    mhon bantuannya, terima kasih.

  9. Tulisan bapak sangat membantu.
    Mohon pencerahan…jika ada terdapat perbedaan satuan antara variabel bagaimana mensiasatinya agar semua variabel memiliki satuan yang sama…
    misalkan ada 4 variabel yang terdiri dari 1variabel dengan satuan USD dan 3 variabel dengan satuan %…
    mohon petunjuk dan referensinya bapak…
    terimakasih..

    Alat analisisnya apa? Kalau menggunakan regresi, tidak masalah satuannya berbeda. Jadi tidak perlu disamakan. Meskipun demikian, ada juga sebagian orang yang berpendapat kalau dalam analisis regresi satuannya harus sama, sehingga mereka menyamakan satuannya dengan cara melogaritmakan variabel-variabel tersebut. Tapi sekali lagi, saya tidak setuju dengan pendapat tersebut dan tidak ada dasarnya. Silakan pelajari jurnal-jurnal yang memuat hasil-hasil penelitian. Tidak masalah dengan satuan yang berbeda tersebut. Yang penting, ketika membaca hasilnya, maka kita harus kembali pada satuan yang digunakan.

  10. terima kasih atas tulisan bapak sangat membantu proses pengerjaan skripsi saya..
    saya ingin bertanya apakah nilai B pada table Variables in the Equation boleh menghasilkan angka 0?mohon penjelsan bapak
    terima kasih sebelumnya

    Boleh saja, tetapi itu nilai ekstrim yang biasanya tidak akan pernah muncul

    • Terima kasih sudah membalas pertanyaan saya. Bapak mengatakan tidak pernah muncul namun dalam penelitian saya nilai B pada table Variables in the Equation ada yang menghasilkan angka 0,00 di ouput spss. tetapi setelah saya lihat ternyata tidak benar-benar bulat menghasilkan 0,00 tetapi 0,00013. Apakah model regresi logistik saya dengan hasil demikian diperbolehkan?dan apa sebenarnya arti nilai B pada table Variables in the Equation?
      Terima kasih

      Tidak masalah dengan angka tersebut. Yang penting bukan benar-benar nol.
      Lalu, bagaimana kita menginterpretasikan koefisien regresi logit tersebut ?
      Sebenarnya sama saja dengan model regresi linear biasa. Dalam model regresi linear, koefisien β menunjukkan perubahan nilai variabel dependent sebagai akibat perubahan satu satuan variabel independent. Hal yang sama sebenarnya juga berlaku dalam model regresi logit, tetapi secara matematis sulit diinterpretasikan. Karena dalam model logit koefisiennya menunjukkan perubahan variabel dependent dalam logit sebagai akibat perubahan satu satuan variabel independent. Logit itu sendiri adalah ln[(P(xi))/(1-P(xi))]
      Karena sulit memaknainya, maka dalam model logit, dikembangkan pengukuran yang dikenal dengan nama odds ratio (ψ). Odds ratio untuk masing-masing variabel ditampilkan oleh SPSS sebagaimana yang terlihat tabel diatas (kolom Exp(B)).

  11. Tulisan Bapak sangat membantu, tapi Pak saya mau mencari / membeli aplikasi SPSS dan panduannya dimana saya bisa dapat ? di daerah saya sulit untuk mendapatkannya !!

    Mungkin bisa dibeli secara online. Banyak toko buku online di internet. Diantaranya yang pernah saya coba yaitu bukukita dan palasari

Tinggalkan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

Logo WordPress.com

You are commenting using your WordPress.com account. Logout / Ubah )

Gambar Twitter

You are commenting using your Twitter account. Logout / Ubah )

Foto Facebook

You are commenting using your Facebook account. Logout / Ubah )

Foto Google+

You are commenting using your Google+ account. Logout / Ubah )

Connecting to %s

%d blogger menyukai ini: