Cara Lebih Praktis Menghitung r Tabel dengan SPSS

Pada SPSS kita juga bisa menghitung nilai r tabel.  Berbagai sumber menyebutkan bahwa untuk menghitung nilai r tabel kita harus terlebih dahulu menghitung nilai t  tabel . Hal ini karena nilai t tabel dihasilkan dari rumus sebagai berikut:

Dimana: r = nilai r tabel, t = nilai t tabel dan df = derajat bebas

Berdasarkan rumus tersebut, maka  pada SPSS dilakukan tahapan sebagai berikut: (kita ikuti cara panjang ini sebelum melihat cara ringkas agar bisa memahami prosesnya)

1. Buka program SPSS, kemudian buat variabel baru dengan nama misalnya nama variabelnya adalah df. Klik disini jika belum memahami cara menginput data di SPSS

2. Kemudian isikan nilai derajat bebas (df) pada variabel tersebut. Terserah Sdr. mulai dari 1 sampai berapapun. Lihat contoh pada gambar berikut, misalnya dari df 1 – 5

3. Setelah itu klik Transform >  Compute Variable.  Akan muncul tampilan berikut: (hanya bagian yang penting yang ditampilkan)

Pada kotak isian Target Variable, isikan nama variabel untuk nilai t tabel yang akan kita hitung. Misalnya dalam contoh diatas kita beri nama t_0.05 (karena kita ingin menghitung t tabel dengan taraf signifikansi 5 %).

Pada kotak isian Numeric Expression: isikan rumus berikut:  IDF.T(0.95,df)

(Catatan: sebenarnya rumus tersebut bisa dibuat dengan menu dropdown, tapi tidak kita bahas disini).

Pada rumus diatas, angka pertama dalam kurung (sebelum tanda koma) yaitu 0.95 adalah tingkat/taraf keyakinan (level of confidence).  Taraf keyakinan ini  = 1 – α.  Nilai α (alpha) ini sendiri adalah tingkat/taraf signifikansi (level of significance). Jadi dalam contoh, misalnya kita ingin mencari nilai t tabel pada taraf signifikansi = 5 % (0.05), maka diisi pada rumus tersebut 1 – 0.05 = 0.95. (catatan: perhatikan perbedaannya dengan Excel. Pada rumus Excel, angka yang kita masukkan adalah langsung nilai α nya).

Selanjutnya, pada rumus diatas, setelah tanda koma adalah nama variabel tempat penyimpanan nilai derajat bebas yang telah kita tuliskan sebelumnya. Karena nama variabel yang kita buat sebelumnya adalah df, maka tulis df pada rumus tersebut.

4.  Setelah itu klik OK, maka akan muncul hasil sebagai berikut:

Kita sudah mendapatkan nilai t tabel. Sekarang lanjutkan pada tahap berikutnya dengan kembali meng klik Transform >  Compute Variable.  Akan muncul tampilan seperti pada tahapan 3. Tetapi sekarang pada kotak isian target variable kita tuliskan nama variabel untuk nilai r tabel yang akan kita hitung. Misalnya sebagai contoh kita beri nama r_0.05. Selanjutnya pada kotak isian Numeric Expression  isikan rumus berikut:  t_0.05/SQRT(df+t_0.05**2)

Setelah itu klik OK, maka akan muncul hasil sebagai berikut:

Nah, sudah kita dapatkan nilai r tabel disamping nilai t tabel.

Tapi, bagaimana kalau kita persingkat tahapannya dengan cara menggabungkan kedua rumus tersebut sehingga lebih praktis.

Mari kita ulangi tahapan ini dari awal, dengan penjelasan yang lebih ringkas

  1. Buat variabel baru dengan nama variabel misalnya df. Isikan angka df misalnya dari 1-5
  2. Klik Transform >  Compute Variable. Selanjutnya pada kotak isian Target Variable tuliskan nama variabel untuk nilai r tabel. Misalnya kita beri nama r_0.05, dan pada kotak isian Numeric Expression  isikan rumus berikut:  IDF.T(0.95,df)/SQRT(df+( IDF.T(0.95,df))**2)

Hasilnya sama kan ? Tapi yang perlu diingat adalah, nilai r tabel ini adalah nilai satu arah (catatan: berbeda dengan Metode Excel yang hasilnya adalah untuk dua arah). Kalau anda melakukan pengujian dua arah dengan α yang sama seperti diatas yaitu 5 %, maka Anda merubah alpha tersebut menjadi 2,5%  (5% / 2).

Membuat Tabel F dengan SPSS

Pada tulisan sebelumnya, kita telah membahas cara membuat tabel t dengan SPSS. Lihat tulisan ini. Kali ini, kita akan membahas cara membuat tabel F dengan SPSS

Berikut tahapannya:

1. Buka program SPSS, kemudian buat variabel baru untuk pengisian derajat bebas. Variabel derajat bebas yang kita buat adalah untuk derajat bebas 2 (df2) atau penyebut. Misalnya kita beri nama variabel tersebut df_2. Bagi yang belum memahami cara menginput data di SPSS, klik disini

2. Kemudian isikan nilai derajat bebas 2 (df2) pada variabel tersebut. Terserah Sdr. mulai dari 1 sampai berapapun. Lihat contoh pada gambar berikut, misalnya dari df 1 – 8

3. Setelah itu klik Transform >  Compute Variable.  Akan muncul tampilan berikut:

Pada kotak isian Target Variable, isikan nama variabel untuk nilai F tabel yang akan kita hitung. Misalnya dalam contoh diatas kita beri nama df1_1_0.05 (karena kita ingin menghitung F tabel dengan df1 (pembilang)=1 berapapun df2 nya, dan dengan α = 5 %)

Pada kotak isian Numeric Expression: isikan rumus berikut:  IDF.F(0.95,1,df_2)

(Catatan: sebenarnya rumus tersebut bisa dibuat dengan menu dropdown, tapi tidak kita bahas disini).

Pada rumus diatas, angka pertama dalam kurung (sebelum tanda koma) yaitu 0.95 adalah tingkat/taraf keyakinan (level of confidence).  Taraf keyakinan ini  = 1 – α.  Nilai  α  (alpha) ini sendiri adalah tingkat/taraf signifikansi (level of significance). Jadi dalam contoh, misalnya kita ingin mencari nilai t tabel pada taraf signifikansi = 5 % (0.05), maka diisi pada rumus tersebut 1 – 0.05 = 0.95. (catatan: perhatikan perbedaannya dengan Excel. Pada rumus Excel, angka yang kita masukkan adalah langsung nilai α nya).

Selanjutnya, pada rumus diatas, angka yang diapit tanda koma yaitu angka 1 adalah nilai df1 nya. Dan yang dibelakang tanda koma adalah nama variabel tempat penyimpanan nilai df2  yang telah kita tuliskan sebelumnya. Karena nama variabel yang kita buat sebelumnya adalah df_2, maka tulis df_2 pada rumus tersebut.

3. Setelah itu klik OK, maka akan muncul hasil sebagai berikut:

Kolom disamping df_2 adalah nilai F tabel untuk  df1=1 dan alpha = 0.05. Dengan cara yang sama, kita menghitung F tabel untuk nilai df1 lainnya (misalnya df1=2, df1=3  dstnya). Dengan cara yang sama kita juga mengganti α nya.

Ok, cukup  sekian dulu. Anda juga bisa melihat cara membuat F tabel dengan Excel. Lihat tulisan ini.   Anda juga bisa mendownload tabel F lengkap, klik disini

Grafik Garis Pada SPSS (Seri 5 Grafik)

Grafik garis merupakan salah satu jenis grafik yang biasa digunakan untuk menggambarkan data yang bersifat perkembangan (trend). Untuk kepentingan tersebut, tulisan kali ini akan membahas mengenai cara membuat grafik garis pada SPSS. adspeedy
Sebagai latihan, misalnya kita punya data mengenai investasi dan tabungan domestik Indonesia (dalam trilyun Rp) selama periode tahun 1990 – 2007, yang telah diinput pada SPSS sebagai berikut:
Tampilan 1.

Misalnya, untuk latihan awal kita ingin membuat grafik garis yang menggambarkan perkembangan investasi selama periode 1990 – 2007.
Klik Graph > Legacy Dialog > Line, akan muncul tampilan berikut:
Tampilan 2.

Pilih jenis Simple (karena hanya satu variabel yang akan kita gambarkan), kemudian pilih Values of individual cases. Selanjutnya klik Define, akan muncul tampilan berikut:
Tampilan 3.

Masukkan variabel Investasi pada kotak Line Represents dan variabel Tahun pada kota Variable. Kemudian klik OK, maka akan keluar output grafik garis sebagai berikut:

Kita juga bisa menggambarkan perkembangan investasi dan tabungan sekaligus dalam satu grafik dengan cara pada tampilan 2 diatas, pilih Multiple. Selanjutnya pada tampilan 3 diatas, masukkan variabel investasi dan tabungan pada kotak Line Represent.
Contoh hasil untuk multiple grafik tersebut sebagai berikut:

Selanjutnya, kita bisa mengedit grafik ini dengan menambahkan judul, label, mengganti warna dan sebagainya pada menu Chart Editor. Untuk menggunakan Chart Editor ini silakan lihat tulisan-tulisan sebelumnya mengenai grafik di blog ini

Lanjutan: Grafik Lingkaran pada SPSS (Seri 4 Grafik)

Postingan ini merupakan lanjutan dari postingan sebelumnya mengenai cara membuat grafik lingkaran pada SPSS. (Silakan baca tulisan tersebut terlebih dahulu, untuk dapat memahami bagian ini).
Jika pada tulisan sebelumnya kita hanya menggambarkan variabel pendidikan dalam satu grafik lingkaran tanpa mengelompokkannya berdasarkan pendapatan (sesuai dengan data latihan yang kita miliki), maka kali ini kita membuat grafik lingkaran yang terkelompok berdasarkan tingkat pendapatan.
Setelah menginput data, klik Graphs > Legacy Dialogs > Pie. Akan muncul tampilan berikut:

Dari tampilan tersebut, pilih Summaries for group of cases (lihat catatan pada tulisan sebelumnya untuk penggunaan pilihan yang lainnya). Kemudian klik Define. Akan muncul tampilan berikut:

Pada Slices Represent, kita diminta untuk memilih apakah irisan dari grafik lingkaran akan menggambarkan jumlah kasus (N of cases), persentase atau proporsi masing-masing kategori (% of cases) atau jumlah dari variabel (Sum of variable). Untuk latihan kita pilih saja % of cases.
Selanjutnya pada kotak Define Slices by: masukan variabel Pendidikan.
Pada Panel Columns masukkan variabel Pendapatan (ini akan menyebabkan tampilan grafik lingkaran akan berjajar secara horizontal, sebaliknya jika variabel Pendapatan dimasukkan ke Panel Rows maka grafik akan berjajar vertikal).
Kemudian klik OK, maka akan muncul output grafik lingkaran sebagai berikut:

Tentunya anda dapat memperbaiki tampilan grafik tersebut dengan menambahkan berbagai elemen yang tersedia pada Chart Editor, seperti yang telah dibahas pada tulisan sebelum ini.

Statistik Deskriptif pd SPSS (Bagian 3)

Postingan ini merupakan bagian ketiga (terakhir) dari dua postingan sebelumnya mengenai statistik deskriptif pada SPSS. Untuk memahami bagian ini, silakan baca terlebih dahulu bagian 1 dan bagian 2.
Pada bagian ketiga ini, kita akan membahas mengenai skewness dan standar errornya serta kurtosis dan standar errornya sebagai bagian dari output statistik deskriptif SPSS yang ada pada kolom kesebelas sampai kolom keempatbelas.

Kolom kesebelas adalah skewness data. Skewness merupakan alat ukur dalam menelusuri distribusi data yang diperbandingkan dengan distribusi normal. Skewness merupakan pengukuran tingkat ketidaksimetrisan (kecondongan) sebaran data di sekitar rata-ratanya. Distribusi normal merupakan distribusi yang simetris dan nilai skewness adalah 0. Skewness yang bernilai positif menunjukkan ujung dari kecondongan menjulur ke arah nilai positif (ekor kurva sebelah kanan lebih panjang). Skewness yang bernilai negatif menunjukkan ujung dari kecondongan menjulur ke arah nilai negatif (ekor kurva sebelah kiri lebih panjang).
Rumus skewness adalah sebagai berikut:

Sebagai contoh, perhitungan skewness untuk data umur adalah sebagai berikut:


Kolom keduabelas adalah standar error dari skewness. Untuk menghitung standar error dari skewness ini (sebagai contoh umur) adalah sebagai berikut:

Kolom ketiga belas adalah Kurtosis. Sebagaimana skewness, kurtosisi juga merupakan alat ukur dalam menelusuri distribusi data yang diperbandingkan dengan distribusi normal. Kurtosis menggambarkan keruncingan (peakedness) atau kerataan (flatness) suatu distibusi data dibandingkan dengan distribusi normal. Pada distribusi normal, nilai kurtosis sama dengan 0. Nilai kurtosis yang positif menunjukkan distribusi yang relatif runcing, sedangkan nilai kurtosis yang negatif menunjukkan distribusi yang relatif rata.
Rumus kurtosis adalah:

Contoh perhitungan untuk data umur sebagai berikut:

Sehingga kurtosisnya adalah:

Kolom keempat belas adalah standar error dari kurtosis, yang dihitung dengan rumus berikut:

Dimana Ses adalah Standar error dari skewness yang telah kita hitung sebelumnya.
Dengan demikian, standar error kurtosis untuk kasus umur dalam latihan kita adalah:

(catatan: jika anda mendapatkan hasil yang sedikit berbeda, itu karena proses pembulatan)

Statistik Deskriptif pd SPSS (Bagian 2)

Bagian ini merupakan bagian kedua dari seri tulisan mengenai statistik deskriptif pada SPSS. Untuk memahami bagian ini, silakan baca dulu bagian 1.

Seperti yang terlihat pada bagian 1 tulisan ini, output SPSS untuk statistik deskriptif terdiri dari 14 kolom. Masing-masing kolom akan dijelaskan sebagai berikut:
Kolom pertama dari output menunjukkan variabel yang diolah.
Kolom kedua adalah jumlah observasi. Perhatikan bahwa untuk umur responden, jumlah observasi adalah 18, sedangkan untuk pendapatan responden adalah 16. Mengapa ? Karena dua observasi sesuai dengan contoh latihan kita adalah data missing. SPSS dalam hal ini hanya akan mengolah data yang valid dengan mengeluarkan data missing.
Kolom ketiga adalah range (jarak). Range merupakan pengukuran yang paling sederhana untuk dispersi (penyebaran) data. Rumus untuk range adalah:
Range = nilai maksimum – nilai minimum
Dalam kasus kita, misalnya range untuk umur adalah 37, karena nilai maksimum 57 dan nilai minimum 20.
Kolom keempat adalah nilai minimum (terendah) dari data
Kolom kelima adalah nilai maksimum (tertinggi) dari data
Kolom keenam adalah jumlah (sum) dari keseluruhan data.
Kolom ketujuh adalah nilai rata-rata, yaitu jumlah dibagi dengan banyaknya observasi. Dalam kasus umur = 658/18 = 36.56
Kolom kedelapan adalah standar error dari rata-rata (Standard error of Mean).
Ini adalah pengukuran untuk mengukur seberapa jauh nilai rata-rata bervariasi dari satu sampel ke sampel lainnya yang diambil dari distribusi yang sama.
Apa perbedaan standard error (of mean) dengan standar deviasi (kolom kesembilan)?.
Kalau standard deviasi adalah suatu indeks yang menggambarkan sebaran data terhadap rata-ratanya, maka standard error (of mean) adalah indeks yang menggambarkan sebaran rata-rata sampel terhadap rata-rata dari rata-rata keseluruhan kemungkinan sampel (rata-rata populasi).
Pengukuran ini berguna, terutama untuk menjawab pertanyaan “seberapa baik rata-rata yang kita dapatkan dari data sampel dapat mengestimasi rata-rata populasi ?”
Cara menghitung standard error dari rata-rata (misalnya untuk umur) adalah:

Dimana SE = standar error dari rata-rata
S = standar deviasi (lihat kolom 9)
n = jumlah observasi
Kolom kesembilan adalah standar deviasi, yang dihitung dengan rumus:

Sebagai contoh perhitungan untuk standard deviasi umur sebagai berikut:


Kolom kesepuluh adalah varians dari data. Secara matematis, varians dan standar deviasi saling terkait, dimana standar deviasi adalah akar varians, atau varians adalah kuadrat dari standar deviasi. Dengan demikian untuk varians umur adalah 10.999^2 = 120.967
Ok, masih terdapat empat kolom berikutnya yang belum kita bahas yaitu skewness dan standar errornya serta kurtosis dan standar errornya. Namun, agar postingan ini tidak terlalu panjang, akan kita bahas pada tulisan berikutnya. Silakan baca bagian 3 ini

Statistik Deskriptif pd SPSS (Bagian 1)

Ukuran-ukuran statistik deskriptif dalam pengolahan data bertujuan untuk mendapatkan gambaran ringkas dari sekumpulan data, sehingga kita dapat menyimpulkan keadaan data secara mudah dan cepat. Selain itu, melalui ukuran-ukuran statistik deskriptif ini, kita dapat menentukan jenis pengolahan statistik lebih lanjut yang sesuai dengan karakteristik data kita tersebut.

Berkaitan dengan hal tersebut, seri tulisan ini akan membahas cara mendapatkan ukuran-ukuran statistik deskriptif pada SPSS. Sebagai latihan, misalnya terdapat data umur dan pendapatan dari 18 responden penelitian kita yang telah diinput pada SPSS sebagai berikut:

Perhatikan pada responden ketiga dan responden keempat belas. Pendapatannya disana tertulis 9999. Angka tersebut bukanlah pendapatan dari responden, tetapi adalah kode untuk “missing” data (data yang tidak tersedia). (lihat penjelasan pada tulisan ini untuk memahami cara memperlakukan data yang “missing”).
Selanjutnya untuk mendapatkan ukuran-ukuran statistik deskriptif, klik Analyze > Descriptive Statistics > Descriptives. Akan muncul tampilan berikut:

Pindahkan variabel umur dan pendapatan (yang tadinya ada dikotak sebelah kiri) ke kotak sebelah kanan, dengan cara klik variabel yang bersangkutan, kemudian klik panah yang menuju ke arah kanan. Kedua variabel akan pindah ke kotak kanan seperti yang terlihat pada tampilan diatas.
Selanjutnya, klik Options, akan muncul tampilan berikut:

Terdapat berbagai pilihan ukuran numerik statistik deskriptif dalam SPSS seperti yang terlihat pada tampilan diatas. Sebagai latihan, klik saja semua pilihan tersebut.
Selain itu, juga terdapat pilihan Display Order (urutan tampilan output). Jika diklik pilihan Variable list, maka output akan ditampilkan dengan urutan sesuai dengan urutan variabel yang kita input (dalam contoh ini, tampilan outputnya umur kemudian pendapatan). Jika dipilih alphabetic, maka output akan ditampilkan berdasarkan urutan abjad awal dari nama variabel (dalam hal ini pendapatan kemudian umur). Jika dipilih Ascending means, maka urutan tampilan output dimulai dari variabel dengan rata-rata terkecil. Jika dipilih Descending means, maka urutan tampilan output dimulai dari variabel dengan rata-rata terbesar. Dalam contoh kita diatas, kita ambil pilihan Variable list
Setelah mengambil pilihan-pilihan yang diinginkan, klik Continue dan klik OK. Akan muncul output statistik deskriptif sebagai berikut:

(Catatan: dalam output SPSS, tabel ini ditampilkan memanjang dalam satu tabel. Mengingat keterbatasan lebar halaman, disini dipecah jadi dua tabel)
Apa makna dari masing-masing pengukuran ? Silakan lihat bahasannya pada bagian kedua dari tulisan ini.

Regresi Binary Logit (Seri 6 Model Ekonometrik dg SPSS)

Sebagai kelanjutan dari tulisan mengenai model pilihan kualitatif, pada bagian ini, akan dijelaskan contoh model binary logit dan estimasinya dengan menggunakan program SPSS. Sebagai contoh ilustratif, misalnya ingin diprediksi pengaruh umur, jenis kelamin dan pendapatan terhadap pembelian mobil. Berdasarkan hasil survai terhadap 48 responden, didapatkan datanya sebagai berikut:

Dimana:
Y = 1, jika konsumen membeli mobil, = 0 jika konsumen tidak membeli mobil
X1 = umur responden dalam tahun
X2 = 1, jika konsumen berjenis kelamin wanita, = 0 jika konsumen berjenis kelamin pria
X3 = 0, jika konsumen berpendapatan rendah, = 1 jika konsumen berpendapatan sedang
= 2 jika konsumen berpendapatan tinggi
Tahapan-tahapan estimasi dalam SPSS sebagai berikut:
1. Setelah data diinput dalam lembar kerja SPSS kemudian klik Analyze > Regression > Binary Logistic , selanjutnya akan muncul tampilan berikut:

2. Masukkan Y sebagai variable dependent dengan cara klik Y di kotak kiri, kemudian klik tanda panah disamping kotak Dependent. Masukkan X1, X2 dan X3 kedalam kotak Covariates, dengan cara klik masing-masing variable, kemudian klik tanda panah disamping kotak covariates.
3. Selanjutnya, karena variabel X3 merupakan peubah kategori (ordinal) dengan lebih dari dua kategori (yaitu 0=pendapatan rendah, 1=pendapatan sedang dan 2=pendapatan tinggi) maka diubah terlebih dahulu ke dalam 2 variabel dummy, untuk mengembangkan model yang logis dan mudah diinterpretasi, sebagai berikut: (ini sama dengan prosedur regresi dengan variabel bebas dummy sebelumnya)
X3_1 = 1, jika konsumen berpendapatan menengah
0, jika selainnya
X3_2 = 1, jika konsumen berpendapatan tinggi
0, jika selainnya
Dalam program SPSS untuk mengkonversi ini dengan cara klik Categorical dari tampilan diatas, maka akan muncul tampilan berikut:

Selanjutnya, klik X3, klik tanda panah disamping Categorical Covariates. Pilih Reference Category dengan First, kemudian klik Change dan Continue. Selanjutnya klik OK.

4. Akan keluar output SPSS untuk regresi logit sebagai berikut (disini hanya ditampilkan bagian-bagian terpenting saja yang akan dibahas):


Printout di tabel pertama diatas menjelaskan transformasi variabel X3 dengan kategori 0,1 dan 2 menjadi dua variabel dummy yaitu X3_1 dan X3_2. Seperti yang terlihat dari tabel tersebut, variabel X3_1 bernilai 1 untuk kategori 1 (pendapatan menengah) dan 0 untuk kategori lainnya. Variabel X3_2 bernilai 1 untuk kategori 2 (pendapatan tinggi) dan 0 untuk kategori lainnya. Dengan demikian, kategori 0 (pendapatan rendah) akan bernilai 0 baik pada variabel X3_1 dan X3_2.
Printout di tabel kedua diatas merupakan nilai Khi-kuadrat (χ2) dari model regresi. Sebagaimana halnya model regresi linear dengan metode OLS, kita juga dapat melakukan pengujian arti penting model secara keseluruhan. Jika metode OLS menggunakan uji F, maka pada model logit menggunakan uji G. Statistik G ini menyebar menurut sebaran Khi-kuadrat (χ2). Karenanya dalam pengujiannya, nilai G dapat dibandingkan dengan nilai χ2 tabel pada α tertentu dan derajat bebas k-1. (kriteria pengujian dan cara pengujian persis sama dengan uji F pada metode regresi OLS). Tetapi, kita juga bisa melihat nilai p-value dari nilai G ini yang biasanya ditampilkan oleh sofware-software statistik, termasuk SPSS.
Dari output SPSS, didapatkan nilai χ2 sebesar 18,131 dengan p-value 0,001. Karena nilai ini jauh dibawah 10 % (jika menggunakan pengujian dengan α=10%), atau jauh dibawah 5% (jika menggunakan pengujian dengan α=5%), maka dapat disimpulkan bahwa model regresi logistik secara keseluruhan dapat menjelaskan atau memprediksi keputusan konsumen dalam membeli mobil.
Printout di tabel ketiga memberikan estimasi koefisien model dan pengujian hipotesis parsial dari koefisien model. Dalam pelaporannya, model regresi logistiknya dapat dituliskan sebagai berikut:

Dari output SPSS diatas menjadi sebagai berikut:

Model ini merupakan model peluang membeli mobil [(P(xi)] yang dipengaruhi oleh faktor-faktor umur, jenis kelamin dan pendapatan. Model tersebut adalah bersifat non-linear dalam parameter. Selanjutnya, untuk menjadikan model tersebut linear, dilakukan transformasi dengan logaritma natural, (transformasi ini yang menjadi hal penting dalam regresi logistik dan dikenal dengan istilah ”logit transformation”), sehingga menjadi (pembahasan lebih rinci, silakan dibaca buku-buku ekonometrik):


1-P(xi) adalah peluang tidak membeli mobil, sebagai kebalikan dari P(xi) sebagai peluang membeli mobil. Oleh karenanya, ln [P(xi)/1-P(xi)] secara sederhana merupakan log dari perbandingan antara peluang membeli mobil dengan peluang tidak membeli mobil. Oleh karenanya juga, koefisien dalam persamaan ini menunjukkan pengaruh dari umur, jenis kelamin dan pendapatan terhadap peluang relative individu membeli mobil yang dibandingkan dengan peluang tidak membeli mobil.
Selanjutnya, untuk menguji faktor mana yang berpengaruh nyata terhadap keputusan pilihan membeli mobil tersebut, dapat menggunakan uji signifikansi dari parameter koefisien secara parsial dengan statistik uji Wald, yang serupa dengan statistik uji t atau uji Z dalam regresi linear biasa, yaitu dengan membagi koefisien terhadap standar error masing-masing koefisien.
Dari output SPSS ditampilkan nilai Wald dan p-valuenya. Berdasarkan nilai p-value (dan menggunakan kriteria pengujian α=10%), dapat dilihat seluruh variabel (kecuali X3_1), berpengaruh nyata (memiliki p-value dibawah 10%) terhadap keputusan membeli mobil.
Lalu, bagaimana interpretasi koefisien regresi logit dari persamaan di atas ? Dalam model regresi linear, koefisien βi menunjukkan perubahan nilai variabel dependent sebagai akibat perubahan satu satuan variabel independent. Hal yang sama sebenarnya juga berlaku dalam model regresi logit, tetapi secara matematis sulit diinterpretasikan.
Koefisien dalam model logit menunjukkan perubahan dalam logit sebagai akibat perubahan satu satuan variabel independent. Interpretasi yang tepat untuk koefisien ini tentunya tergantung pada kemampuan menempatkan arti dari perbedaan antara dua logit. Oleh karenanya, dalam model logit, dikembangkan pengukuran yang dikenal dengan nama odds ratio (ψ). Odds ratio untuk masing-masing variabel ditampilkan oleh SPSS sebagaimana yang terlihat tabel diatas (kolom Exp(B)).
Odds ratio dapat dirumuskan: ψ = eβ, dimana e adalah bilangan 2,71828 dan β adalah koefisien masing-masing variabel. Sebagai contoh, odds ratio untuk variabel X2 = e-0.1602 = 0,201 (lihat output SPSS).
Dalam kasus variabel X2 (jenis kelamin dimana 1 = wanita dan 0 = pria), dengan odds ratio sebesar 0,201 dapat diartikan bahwa peluang wanita untuk membeli mobil adalah 0,201 kali dibandingkan pria, jika umur dan pendapatan mereka sama. Artinya wanita memiliki peluang lebih rendahi dalam membeli mobil dibandingkan pria.
Dalam kasus variabel X1 (umur), dengan odds ratio sebesar 1,153 dapat diartikan bahwa konsumen yang berumur lebih tua satu tahun peluang membeli mobilnya adalah 1,153 kali dibandingkan konsumen umur yang lebih muda (satu tahun), jika pendapatan dan jenis kelamin mereka sama. Artinya orang yang lebih tua memiliki peluang yang lebih tinggi dalam membeli mobil.
Dalam konteks umur ini (yang merupakan variabel dengan skala ratio), hati-hati menginterpretasikan nilai perbedaan peluangnya. Jika perbedaan umur lebih dari 1 tahun, misalnya 10 tahun, maka odds rationya akan menjadi 4,14, yang diperoleh dari perhitungan sbb: ψ=e(10 x 0.142) . Artinya peluang membeli mobil konsumen yang berumur lebih tua 10 tahun adalah 4,14 kali dibandingkan konsumen yang lebih muda (10 tahun) darinya.
Selanjutnya, dalam konteks variabel pendapatan, terlihat bahwa X31 tidak berpengaruh signifikan. Artinya, peluang membeli mobil antara konsumen pendapatan sedang dan pendapatan rendah adalah sama saja. Sebaliknya, untuk X32, dapat diinterpretasikan bahwa peluang membeli mobil konsumen pendapatan tinggi adalah 6,45 kali dibandingkan pendapatan rendah, jika umur dan jenis kelaminnya sama.

Bentuk Fungsional Regresi Linear (Seri 4b Model Ekonometrik dg SPSS)

Sebagai kelanjutan dari tulisan mengenai bentuk-bentuk fungsional model regresi, pada bagian ini akan dibahas dua bentuk umum lainnya yaitu model semilog dan model resiprokal
1.Model Semilog
Model semilog adalah model dimana hanya salah satu variabel (Y atau X) yang ditransformasi secara logaritma. Bentuk modelnya sebagai berikut:
lnYi = α0 + α1Xi + ui
atau
Yi = β0 + β1lnXi + ui
α1 mengukur perubahan relatif (persentase) Y yang disebabkan oleh perubahan absolut dari X. Model ini disebut juga dengan model pertumbuhan tetap, karena mengukur tingkat pertumbuhan yang konstan sepanjang waktu seperti trend kesempatan kerja, produktivitas, dan lainnya. Sedangkan untuk model kedua, β1 mengukur perubahan absolut Y yang disebabkan oleh perubahan relatif (persentase) dari X.
Sebagai contoh, dengan menggunakan data yang sama pada latihan di tulisan seri 4a sebelumnya, dan misalnya yang kita transformasikan secara logaritma pada model ini adalah harga (X), sedangkan penawaran tetap menggunakan nilai absolutnya. Akan didapatkan output SPSS sebagai berikut:


Output SPSS tersebut dapat diringkas sebagai berikut:

Catatan: * signifikan pada α = 10%, ** signifikan pada α = 5 %, *** signifikan pada α = 1%
Nilai P-value pada koefisien lnXi lebih kecil dibandingkan nilai α = 1% (Kita juga bisa bandingkan t-hitung dan t tabel). Artinya terdapat pengaruh yang sangat signifikan secara statistik antara harga dan penawaran. Selanjutnya koefisien dapat diinterpretasikan sebagai berikut: Untuk setiap peningkatan sebesar Rp 1 % dari harga, maka akan meningkatkan penawaran (produksi) sebesar 1160 unit (nilai koefisien lnXi).
2. Model Resiprokal
Model resiprokal juga cukup populer digunakan dalam penelitian-penelitian ekonomi. Model ini dapat dirumuskan:
Yi = β0 +β1(1/Xi) + ui
Model ini meskipun tidak linear dalam variabel (1/Xi) tetapi linear dalam parameter (β1), karenanya masih dikategorikan sebagai model regresi linear.
Model ini memiliki sifat dimana Y akan turun secara kontinyu pada saat X meningkat, dan jika X sangat besar, maka Y akan memiliki nilai mendekati β1. Oleh karenanya, model ini bisa digunakan untuk menggambarkan perilaku biaya produksi tetap rata-rata (AFC), dimana AFC (Y) akan menurun secara kontinyu ketika X (produksi) meningkat (karena biaya tetap dibebankan pada jumlah unit produksi yang lebih banyak).
Dalam aplikasi SPSS, untuk mengestimasi model resiprokal ini, nilai observasi X terlebih dahulu ditransformasi dalam bentuk perhitungan 1/X. Bagaimana cara mentransformasi variabel X tersebut dengan SPSS ?
Misalnya dalam contoh data kita sebelumnya, klik Transform > Compute Variable. Akan muncul tampilan berikut:

Isikan pada kotak Target Variable, nama dari variabel yang akan kita buat. Dalam contoh diatas adalah Xr (catatan: jangan menggunakan nama 1/X, karena untuk nama variabel hanya boleh huruf dan angka. Simbol lain tidak diperkenankan). Selanjutnya pada kotak Numeric Expression, isikan rumus 1/X. Klik OK, maka akan muncul variabel baru sebagai transformasi variabel X menjadi 1/X.
Setelah mendapatkan variabel 1/X, selanjutnya lakukan estimasi seperti prosedur untuk estimasi regresi seperti yang dijelaskan sebelumnya.

Bentuk Fungsional Regresi Linear (Seri 4a Model Ekonometrik dg SPSS)

Model-model regresi yang dikemukakan sebelumnya adalah model yang linear dalam paramater dan variabel. Namun, pengertian regresi linear yang lebih umum adalah regresi tersebut linear dalam parameter (atau yang secara intrinsik bisa dibuat linear melalui transformasi variabel), sedangkan variabelnya boleh saja bersifat linear atau tidak. Misalnya, persamaan Y = β0+ β1Xi2 dapat digolongkan sebagai regresi linear, karena paramaternya (β1) bersifat linear, meskipun variabelnya (Xi2) tidak bersifat linear.
Berdasarkan hal tersebut, dapat dikembangkan berbagai berbagai bentuk fungsional model regresi. Bentuk pertama yang akan kita bahas dalam tulisan ini adalah Model Double-Log sebagai berikut:
Misalnya suatu model: Yi = β0Xiβ1eui
Model tersebut adalah terlihat tidak linear dalam parameter, tetapi secara intrinsik bisa dibuat linear dengan transformasi sebagai berikut:
lnYi = lnβ0 + β1lnXi + ui
ln = logaritma natural (logaritma dengan bilangan dasar e = 2,71828)
Jika α = lnβ0, Yi* = lnYi dan Xi* = lnXi , persamaan tersebut dapat ditulis kembali menjadi:
Yi* = α + β1Xi*+ ui
Model ini dinamakan dengan model double-log. Hal yang perlu diperhatikan dalam model double-log adalah, koefisien β1 dapat ditafsirkan sebagai elastisitas yaitu persentase perubahan variabel Y sebagai akibat persentase perubahan variabel X. Dengan demikian, jika X merupakan harga dan Y adalah permintaan, maka koefisien β1 dapat diinterpretasikan sebagai elastisitas harga.
Sebagai contoh, misalnya kita punya data selama tahun 1993 – 2008 mengenai harga suatu produk (X dalam ribuan rupiah) dan jumlah produksi (Y dalam ribuan unit) yang diasumsikan sebagai jumlah barang yang ditawarkan sebagai berikut:


Setelah data tersebut diinput di SPSS, langkah pertama kita adalah mentransformasi data kedalam nilai logaritma natural dengan cara: Klik Transform > Compute Variable. Akan muncul tampilan berikut:

Di kotak Target Variable isikan nama variabel untuk menampung hasil transformasi. Misalnya dalam contoh lnX untuk logaritma variabel X. Di kotak Numeric Expression tuliskan rumus berikut: LN(X). Kemudian klik OK.
Lakukan proses yang sama untuk variabel Y. Secara otomatis, dalam worksheet SPSS kita akan ditambahkan dua variabel baru yaitu LnX dan LnY.
Setelah itu klik Analyze > Regression > Linear. Akan muncul tampilan berikut:

Isikan pada Dependent dengan variabel lnY dan di independent dengan variabel lnX. Klik OK. Maka akan keluar output SPSS sebagai berikut:

Output SPSS tersebut dapat diringkas sebagai berikut:

Catatan: * signifikan pada α = 10%, ** signifikan pada α = 5 %, *** signifikan pada α = 1%
Nilai P-value pada koefisien lnXi lebih kecil dibandingkan nilai α = 1%. Artinya terdapat pengaruh yang sangat signifikan secara statistik antara harga dan penawaran. Selanjutnya koefisien dapat diinterpretasikan sebagai berikut: Untuk setiap peningkatan sebesar Rp 1 % dari harga, maka akan meningkatkan penawaran (produksi) sebesar 1,205 % (nilai koefisien lnXi). Dengan kata lain, elastisitas harga penawaran untuk produk ini adalah sebesar 1,205 (elastis).
Penjelasan lainnya dari angka-angka didalam output SPSS dan model regresi, silakan ikuti tulisan-tulisan sebelum ini.

Bersambung ke Seri 4b